3.1.63 \(\int \frac {\cos ^2(e+f x)}{(a+a \sin (e+f x))^{5/2} (c-c \sin (e+f x))^{3/2}} \, dx\) [63]

3.1.63.1 Optimal result
3.1.63.2 Mathematica [A] (verified)
3.1.63.3 Rubi [A] (verified)
3.1.63.4 Maple [B] (verified)
3.1.63.5 Fricas [A] (verification not implemented)
3.1.63.6 Sympy [F(-1)]
3.1.63.7 Maxima [F]
3.1.63.8 Giac [A] (verification not implemented)
3.1.63.9 Mupad [F(-1)]

3.1.63.1 Optimal result

Integrand size = 38, antiderivative size = 104 \[ \int \frac {\cos ^2(e+f x)}{(a+a \sin (e+f x))^{5/2} (c-c \sin (e+f x))^{3/2}} \, dx=-\frac {\cos (e+f x)}{2 a c f (a+a \sin (e+f x))^{3/2} \sqrt {c-c \sin (e+f x)}}+\frac {\text {arctanh}(\sin (e+f x)) \cos (e+f x)}{2 a^2 c f \sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}} \]

output
-1/2*cos(f*x+e)/a/c/f/(a+a*sin(f*x+e))^(3/2)/(c-c*sin(f*x+e))^(1/2)+1/2*ar 
ctanh(sin(f*x+e))*cos(f*x+e)/a^2/c/f/(a+a*sin(f*x+e))^(1/2)/(c-c*sin(f*x+e 
))^(1/2)
 
3.1.63.2 Mathematica [A] (verified)

Time = 7.38 (sec) , antiderivative size = 163, normalized size of antiderivative = 1.57 \[ \int \frac {\cos ^2(e+f x)}{(a+a \sin (e+f x))^{5/2} (c-c \sin (e+f x))^{3/2}} \, dx=\frac {\cos ^3(e+f x) \left (1+\log \left (\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right )-\log \left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right )+\left (\log \left (\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right )-\log \left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right )\right ) \sin (e+f x)\right )}{2 c f (-1+\sin (e+f x)) (a (1+\sin (e+f x)))^{5/2} \sqrt {c-c \sin (e+f x)}} \]

input
Integrate[Cos[e + f*x]^2/((a + a*Sin[e + f*x])^(5/2)*(c - c*Sin[e + f*x])^ 
(3/2)),x]
 
output
(Cos[e + f*x]^3*(1 + Log[Cos[(e + f*x)/2] - Sin[(e + f*x)/2]] - Log[Cos[(e 
 + f*x)/2] + Sin[(e + f*x)/2]] + (Log[Cos[(e + f*x)/2] - Sin[(e + f*x)/2]] 
 - Log[Cos[(e + f*x)/2] + Sin[(e + f*x)/2]])*Sin[e + f*x]))/(2*c*f*(-1 + S 
in[e + f*x])*(a*(1 + Sin[e + f*x]))^(5/2)*Sqrt[c - c*Sin[e + f*x]])
 
3.1.63.3 Rubi [A] (verified)

Time = 0.80 (sec) , antiderivative size = 102, normalized size of antiderivative = 0.98, number of steps used = 8, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.211, Rules used = {3042, 3320, 3042, 3222, 3042, 3220, 3042, 4257}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\cos ^2(e+f x)}{(a \sin (e+f x)+a)^{5/2} (c-c \sin (e+f x))^{3/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\cos (e+f x)^2}{(a \sin (e+f x)+a)^{5/2} (c-c \sin (e+f x))^{3/2}}dx\)

\(\Big \downarrow \) 3320

\(\displaystyle \frac {\int \frac {1}{(\sin (e+f x) a+a)^{3/2} \sqrt {c-c \sin (e+f x)}}dx}{a c}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {1}{(\sin (e+f x) a+a)^{3/2} \sqrt {c-c \sin (e+f x)}}dx}{a c}\)

\(\Big \downarrow \) 3222

\(\displaystyle \frac {\frac {\int \frac {1}{\sqrt {\sin (e+f x) a+a} \sqrt {c-c \sin (e+f x)}}dx}{2 a}-\frac {\cos (e+f x)}{2 f (a \sin (e+f x)+a)^{3/2} \sqrt {c-c \sin (e+f x)}}}{a c}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\int \frac {1}{\sqrt {\sin (e+f x) a+a} \sqrt {c-c \sin (e+f x)}}dx}{2 a}-\frac {\cos (e+f x)}{2 f (a \sin (e+f x)+a)^{3/2} \sqrt {c-c \sin (e+f x)}}}{a c}\)

\(\Big \downarrow \) 3220

\(\displaystyle \frac {\frac {\cos (e+f x) \int \sec (e+f x)dx}{2 a \sqrt {a \sin (e+f x)+a} \sqrt {c-c \sin (e+f x)}}-\frac {\cos (e+f x)}{2 f (a \sin (e+f x)+a)^{3/2} \sqrt {c-c \sin (e+f x)}}}{a c}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\cos (e+f x) \int \csc \left (e+f x+\frac {\pi }{2}\right )dx}{2 a \sqrt {a \sin (e+f x)+a} \sqrt {c-c \sin (e+f x)}}-\frac {\cos (e+f x)}{2 f (a \sin (e+f x)+a)^{3/2} \sqrt {c-c \sin (e+f x)}}}{a c}\)

\(\Big \downarrow \) 4257

\(\displaystyle \frac {\frac {\cos (e+f x) \text {arctanh}(\sin (e+f x))}{2 a f \sqrt {a \sin (e+f x)+a} \sqrt {c-c \sin (e+f x)}}-\frac {\cos (e+f x)}{2 f (a \sin (e+f x)+a)^{3/2} \sqrt {c-c \sin (e+f x)}}}{a c}\)

input
Int[Cos[e + f*x]^2/((a + a*Sin[e + f*x])^(5/2)*(c - c*Sin[e + f*x])^(3/2)) 
,x]
 
output
(-1/2*Cos[e + f*x]/(f*(a + a*Sin[e + f*x])^(3/2)*Sqrt[c - c*Sin[e + f*x]]) 
 + (ArcTanh[Sin[e + f*x]]*Cos[e + f*x])/(2*a*f*Sqrt[a + a*Sin[e + f*x]]*Sq 
rt[c - c*Sin[e + f*x]]))/(a*c)
 

3.1.63.3.1 Defintions of rubi rules used

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3220
Int[1/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(c_) + (d_.)*sin[(e_ 
.) + (f_.)*(x_)]]), x_Symbol] :> Simp[Cos[e + f*x]/(Sqrt[a + b*Sin[e + f*x] 
]*Sqrt[c + d*Sin[e + f*x]])   Int[1/Cos[e + f*x], x], x] /; FreeQ[{a, b, c, 
 d, e, f}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0]
 

rule 3222
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + ( 
f_.)*(x_)])^(n_), x_Symbol] :> Simp[b*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*( 
(c + d*Sin[e + f*x])^n/(a*f*(2*m + 1))), x] + Simp[(m + n + 1)/(a*(2*m + 1) 
)   Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n, x], x] /; Free 
Q[{a, b, c, d, e, f, m, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && 
 ILtQ[Simplify[m + n + 1], 0] && NeQ[m, -2^(-1)] && (SumSimplerQ[m, 1] || 
!SumSimplerQ[n, 1])
 

rule 3320
Int[cos[(e_.) + (f_.)*(x_)]^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_ 
.)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Simp[1/(a^(p/ 
2)*c^(p/2))   Int[(a + b*Sin[e + f*x])^(m + p/2)*(c + d*Sin[e + f*x])^(n + 
p/2), x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && EqQ[b*c + a*d, 0] && 
EqQ[a^2 - b^2, 0] && IntegerQ[p/2]
 

rule 4257
Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-ArcTanh[Cos[c + d*x]]/d, x] 
 /; FreeQ[{c, d}, x]
 
3.1.63.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(249\) vs. \(2(92)=184\).

Time = 0.22 (sec) , antiderivative size = 250, normalized size of antiderivative = 2.40

method result size
default \(-\frac {\left (\cos ^{2}\left (f x +e \right )\right ) \ln \left (\csc \left (f x +e \right )-\cot \left (f x +e \right )-1\right )+\cos \left (f x +e \right ) \sin \left (f x +e \right ) \ln \left (\csc \left (f x +e \right )-\cot \left (f x +e \right )-1\right )-\left (\cos ^{2}\left (f x +e \right )\right ) \ln \left (-\cot \left (f x +e \right )+\csc \left (f x +e \right )+1\right )-\cos \left (f x +e \right ) \sin \left (f x +e \right ) \ln \left (-\cot \left (f x +e \right )+\csc \left (f x +e \right )+1\right )+\ln \left (\csc \left (f x +e \right )-\cot \left (f x +e \right )-1\right ) \cos \left (f x +e \right )-\cos \left (f x +e \right ) \ln \left (-\cot \left (f x +e \right )+\csc \left (f x +e \right )+1\right )-\left (\cos ^{2}\left (f x +e \right )\right )-\cos \left (f x +e \right ) \sin \left (f x +e \right )-\sin \left (f x +e \right )+1}{2 a^{2} c f \left (\cos \left (f x +e \right )+\sin \left (f x +e \right )+1\right ) \sqrt {a \left (1+\sin \left (f x +e \right )\right )}\, \sqrt {-c \left (\sin \left (f x +e \right )-1\right )}}\) \(250\)

input
int(cos(f*x+e)^2/(a+a*sin(f*x+e))^(5/2)/(c-c*sin(f*x+e))^(3/2),x,method=_R 
ETURNVERBOSE)
 
output
-1/2/a^2/c/f*(cos(f*x+e)^2*ln(csc(f*x+e)-cot(f*x+e)-1)+cos(f*x+e)*sin(f*x+ 
e)*ln(csc(f*x+e)-cot(f*x+e)-1)-cos(f*x+e)^2*ln(-cot(f*x+e)+csc(f*x+e)+1)-c 
os(f*x+e)*sin(f*x+e)*ln(-cot(f*x+e)+csc(f*x+e)+1)+ln(csc(f*x+e)-cot(f*x+e) 
-1)*cos(f*x+e)-cos(f*x+e)*ln(-cot(f*x+e)+csc(f*x+e)+1)-cos(f*x+e)^2-cos(f* 
x+e)*sin(f*x+e)-sin(f*x+e)+1)/(cos(f*x+e)+sin(f*x+e)+1)/(a*(1+sin(f*x+e))) 
^(1/2)/(-c*(sin(f*x+e)-1))^(1/2)
 
3.1.63.5 Fricas [A] (verification not implemented)

Time = 0.32 (sec) , antiderivative size = 313, normalized size of antiderivative = 3.01 \[ \int \frac {\cos ^2(e+f x)}{(a+a \sin (e+f x))^{5/2} (c-c \sin (e+f x))^{3/2}} \, dx=\left [\frac {\sqrt {a c} {\left (\cos \left (f x + e\right ) \sin \left (f x + e\right ) + \cos \left (f x + e\right )\right )} \log \left (-\frac {a c \cos \left (f x + e\right )^{3} - 2 \, a c \cos \left (f x + e\right ) - 2 \, \sqrt {a c} \sqrt {a \sin \left (f x + e\right ) + a} \sqrt {-c \sin \left (f x + e\right ) + c} \sin \left (f x + e\right )}{\cos \left (f x + e\right )^{3}}\right ) - 2 \, \sqrt {a \sin \left (f x + e\right ) + a} \sqrt {-c \sin \left (f x + e\right ) + c}}{4 \, {\left (a^{3} c^{2} f \cos \left (f x + e\right ) \sin \left (f x + e\right ) + a^{3} c^{2} f \cos \left (f x + e\right )\right )}}, -\frac {\sqrt {-a c} {\left (\cos \left (f x + e\right ) \sin \left (f x + e\right ) + \cos \left (f x + e\right )\right )} \arctan \left (\frac {\sqrt {-a c} \sqrt {a \sin \left (f x + e\right ) + a} \sqrt {-c \sin \left (f x + e\right ) + c}}{a c \cos \left (f x + e\right ) \sin \left (f x + e\right )}\right ) + \sqrt {a \sin \left (f x + e\right ) + a} \sqrt {-c \sin \left (f x + e\right ) + c}}{2 \, {\left (a^{3} c^{2} f \cos \left (f x + e\right ) \sin \left (f x + e\right ) + a^{3} c^{2} f \cos \left (f x + e\right )\right )}}\right ] \]

input
integrate(cos(f*x+e)^2/(a+a*sin(f*x+e))^(5/2)/(c-c*sin(f*x+e))^(3/2),x, al 
gorithm="fricas")
 
output
[1/4*(sqrt(a*c)*(cos(f*x + e)*sin(f*x + e) + cos(f*x + e))*log(-(a*c*cos(f 
*x + e)^3 - 2*a*c*cos(f*x + e) - 2*sqrt(a*c)*sqrt(a*sin(f*x + e) + a)*sqrt 
(-c*sin(f*x + e) + c)*sin(f*x + e))/cos(f*x + e)^3) - 2*sqrt(a*sin(f*x + e 
) + a)*sqrt(-c*sin(f*x + e) + c))/(a^3*c^2*f*cos(f*x + e)*sin(f*x + e) + a 
^3*c^2*f*cos(f*x + e)), -1/2*(sqrt(-a*c)*(cos(f*x + e)*sin(f*x + e) + cos( 
f*x + e))*arctan(sqrt(-a*c)*sqrt(a*sin(f*x + e) + a)*sqrt(-c*sin(f*x + e) 
+ c)/(a*c*cos(f*x + e)*sin(f*x + e))) + sqrt(a*sin(f*x + e) + a)*sqrt(-c*s 
in(f*x + e) + c))/(a^3*c^2*f*cos(f*x + e)*sin(f*x + e) + a^3*c^2*f*cos(f*x 
 + e))]
 
3.1.63.6 Sympy [F(-1)]

Timed out. \[ \int \frac {\cos ^2(e+f x)}{(a+a \sin (e+f x))^{5/2} (c-c \sin (e+f x))^{3/2}} \, dx=\text {Timed out} \]

input
integrate(cos(f*x+e)**2/(a+a*sin(f*x+e))**(5/2)/(c-c*sin(f*x+e))**(3/2),x)
 
output
Timed out
 
3.1.63.7 Maxima [F]

\[ \int \frac {\cos ^2(e+f x)}{(a+a \sin (e+f x))^{5/2} (c-c \sin (e+f x))^{3/2}} \, dx=\int { \frac {\cos \left (f x + e\right )^{2}}{{\left (a \sin \left (f x + e\right ) + a\right )}^{\frac {5}{2}} {\left (-c \sin \left (f x + e\right ) + c\right )}^{\frac {3}{2}}} \,d x } \]

input
integrate(cos(f*x+e)^2/(a+a*sin(f*x+e))^(5/2)/(c-c*sin(f*x+e))^(3/2),x, al 
gorithm="maxima")
 
output
integrate(cos(f*x + e)^2/((a*sin(f*x + e) + a)^(5/2)*(-c*sin(f*x + e) + c) 
^(3/2)), x)
 
3.1.63.8 Giac [A] (verification not implemented)

Time = 0.35 (sec) , antiderivative size = 169, normalized size of antiderivative = 1.62 \[ \int \frac {\cos ^2(e+f x)}{(a+a \sin (e+f x))^{5/2} (c-c \sin (e+f x))^{3/2}} \, dx=-\frac {\frac {\log \left (-\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + 1\right )}{a^{\frac {5}{2}} c^{\frac {3}{2}} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )} - \frac {2 \, \log \left ({\left | \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) \right |}\right )}{a^{\frac {5}{2}} c^{\frac {3}{2}} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )} + \frac {1}{{\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} - 1\right )} a^{\frac {5}{2}} c^{\frac {3}{2}} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )}}{4 \, f} \]

input
integrate(cos(f*x+e)^2/(a+a*sin(f*x+e))^(5/2)/(c-c*sin(f*x+e))^(3/2),x, al 
gorithm="giac")
 
output
-1/4*(log(-sin(-1/4*pi + 1/2*f*x + 1/2*e)^2 + 1)/(a^(5/2)*c^(3/2)*sgn(cos( 
-1/4*pi + 1/2*f*x + 1/2*e))*sgn(sin(-1/4*pi + 1/2*f*x + 1/2*e))) - 2*log(a 
bs(sin(-1/4*pi + 1/2*f*x + 1/2*e)))/(a^(5/2)*c^(3/2)*sgn(cos(-1/4*pi + 1/2 
*f*x + 1/2*e))*sgn(sin(-1/4*pi + 1/2*f*x + 1/2*e))) + 1/((sin(-1/4*pi + 1/ 
2*f*x + 1/2*e)^2 - 1)*a^(5/2)*c^(3/2)*sgn(cos(-1/4*pi + 1/2*f*x + 1/2*e))* 
sgn(sin(-1/4*pi + 1/2*f*x + 1/2*e))))/f
 
3.1.63.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\cos ^2(e+f x)}{(a+a \sin (e+f x))^{5/2} (c-c \sin (e+f x))^{3/2}} \, dx=\int \frac {{\cos \left (e+f\,x\right )}^2}{{\left (a+a\,\sin \left (e+f\,x\right )\right )}^{5/2}\,{\left (c-c\,\sin \left (e+f\,x\right )\right )}^{3/2}} \,d x \]

input
int(cos(e + f*x)^2/((a + a*sin(e + f*x))^(5/2)*(c - c*sin(e + f*x))^(3/2)) 
,x)
 
output
int(cos(e + f*x)^2/((a + a*sin(e + f*x))^(5/2)*(c - c*sin(e + f*x))^(3/2)) 
, x)